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ABSTRACT: Visible and infrared radiance products of geostationary orbiting platforms provide virtually continuous
observations of Earth. In contrast, low-Earth orbiters observe passive microwave (PMW) radiances at any location much
less frequently. Prior literature demonstrates the ability of a machine learning (ML) approach to build a link between these
two complementary radiance spectra by predicting PMW observations using infrared and visible products collected from
geostationary instruments, which could potentially deliver a highly desirable synthetic PMW product with nearly continu-
ous spatiotemporal coverage. However, current ML models lack the ability to provide a measure of uncertainty of such a
product, significantly limiting its applications. In this work, Bayesian deep learning is employed to generate synthetic
Global Precipitation Measurement (GPM) Microwave Imager (GMI) data from Advanced Baseline Imager (ABI) obser-
vations with attached uncertainties over the ocean. The study first uses deterministic residual networks (ResNets) to gener-
ate synthetic GMI brightness temperatures with as little mean absolute error as 1.72 K at the ABI spatiotemporal
resolution. Then, for the same task, we use three Bayesian ResNet models to produce a comparable amount of error while
providing previously unavailable predictive variance (i.e., uncertainty) for each synthetic data point. We find that the
Flipout configuration provides the most robust calibration between uncertainty and error across GMI frequencies, and
then demonstrate how this additional information is useful for discarding high-error synthetic data points prior to use by
downstream applications.
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1. Introduction and motivation

Passive microwave (PMW) radiometers have been utilized
to collect Earth science observations since the 1970s (Carver
et al. 1985; Kummerow et al. 1996) due to their valuable con-
tributions toward numerous applications, such as establishing
climatologies of columnar water vapor (e.g., Hilburn and
Wentz 2008), clouds (e.g., Greenwald et al. 2018), and precipi-
tation (e.g., Adler et al. 2003); validating numerical weather
prediction (NWP) model accuracy (e.g., Wang et al. 2022);
enhancing NWP accuracy through data assimilation in both
clear-sky (e.g., Derber and Wu 1998; Pu et al. 2019) and
cloudy and/or precipitating conditions (e.g., Weng 2017;
Migliorini and Candy 2019); and improving real-time esti-
mates of tropical cyclone structure and intensity (e.g., Weng
2017). These and additional applications are made possible
through utilizing knowledge of how water in all three phases
impacts radiative transfer processes, such as emission and
scattering (Kummerow et al. 1996). For example, estimates of
humidity are relatively straightforward to retrieve because mi-
crowave radiation is generally increasingly sensitive to ab-
sorption by water vapor molecules as frequency increases
from 10 to 200 GHz, excluding water vapor absorption bands
such as 23 and 183 GHz. In contrast, estimates of cloud and

precipitation are more challenging to derive from microwave
brightness temperatures Tmw

b due to greater nonlinear interac-
tions between radiation and both liquid water and ice. For
example, 37-GHz brightness temperature is sensitive to both
liquid water and ice, such that clouds generally appear warmer
than their surrounding environment due to liquid water emis-
sion, but very deep convection appears much colder than the
surrounding environment due to large amounts of scattering
by ice (Guilloteau and Foufoula-Georgiou 2020).

However, there are several drawbacks to using PMW data.
First, upwelling microwave radiance from Earth’s surface or
the atmosphere is much lower than infrared radiance for
Earth-based bodies with temperatures roughly between 180
and 330 K. Therefore, PMW sensors must observe radiation
across a larger footprint on Earth’s surface to gather meaning-
ful data. For example, the nominal at-nadir field of view for
the thermal channels of the Advanced Baseline Imager (ABI;
Schmit et al. 2005) aboard the current generation of Geostation-
ary Operational Environmental Satellites (GOES) is 2 km, and
GOES provides full-disk imagery every 10–15 min depending
on the data retrieval strategy (or “mode”) used. In contrast, the
nominal field of view for the 23-GHz PMW observation band
for the Global Precipitation Measurement (GPM) Microwave
Imager (GMI; Draper et al. 2015) is only about 16 3 10 km2. In
addition, microwave radiometers must fly in low-Earth orbit to
achieve even these spatial resolutions. As a result, PMW data
are only available in swaths beneath the satellite; therefore,
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many hours may pass between successive PMW observations at
any point on Earth. This shortcoming is partially remedied by
collecting PMW data using multiple satellites simultaneously.
However, at any time, large spatial gaps remain in PMW data-
sets, which strongly limits the ability to follow the development
of specific meteorological features of interest. Despite these limi-
tations, PMW data continue to provide valuable information
that improves the quality of numerous downstream applications.
In an ideal world, meteorologists could have access to PMW
data everywhere as frequently as visible and infrared data are
available.

Therefore, in this study, we explore the feasibility of using
deep learning to generate synthetic PMW data from infrared
data. Numerous infrared wavelengths, such as those observed
by the ABI aboard the current generation of GOES plat-
forms, are sensitive to water vapor in varying degrees. Since
microwave radiation is also sensitive to absorption by water
vapor molecules, we hypothesize that multispectral ABI radi-
ances contain information that may help predict what PMW
radiances would be if a PMW radiometer were observing the
same location. Deep learning, a type of supervised machine
learning that uses deep neural networks to represent complex
functions (Goodfellow et al. 2016), is one possible way to em-
ulate PMW data in locations where it is not available but geo-
stationary radiances are observed.

Previous literature suggests that predicting synthetic micro-
wave data from infrared data may be possible, since a variety
of information that is implicitly contained within satellite
brightness temperatures has successfully been inferred. For
example, Chen et al. (2019), Wimmers et al. (2019), Lee et al.
(2019), and Maskey et al. (2020) each used a convolutional
neural network (CNN) to estimate tropical cyclone intensity
using PMW observations and/or infrared radiances. Others
(Giffard-Roisin et al. 2020) built a CNN that demonstrated
improvements in tropical cyclone track forecasts relative to
consensus model forecasts. Hilburn (2020) has suggested that
column-integrated atmospheric properties such as convective
available potential energy (CAPE) or composite reflectivity
can be derived using GOES ABI radiances. Petković et al.
(2019) successfully explored the use of a deep learning ap-
proach in extracting the information content from PMW ob-
servation vectors to help identify precipitation types. Such
applications of deep learning demonstrate benefits for maxi-
mizing information content extraction. However, they lack
the ability to provide the uncertainty of predictions, which
limits assessment of confidence in any prediction.

Not only is uncertainty helpful for establishing trust in pre-
dictions, but estimates of observational uncertainty are also
necessary for many downstream, atmospheric applications of
PMW data, such as data assimilation in NWP models (e.g.,
Weng 2017; Geer et al. 2017; Bonavita et al. 2020) and re-
trieval methods utilizing optimal estimation theory (e.g.,
Kummerow et al. 1996; Kulie et al. 2010; Schulte et al. 2022).
In both data assimilation and optimal estimation, an a priori
distribution (which is typically assumed to be Gaussian) is
combined with a distribution of observations that is weighted
by its uncertainty to produce a posterior distribution that
better reflects the true state of the atmosphere. In optimal

estimation, this is achieved through utilizing Bayes’s theorem
to solve an inverse matrix problem (Rodgers 2000). In data
assimilation, the corresponding a priori and observation dis-
tributions and uncertainties are combined by utilizing knowl-
edge of dynamical processes in various ways that typically
involve minimizing a cost function (e.g., Dee 2004). While as-
similating overocean, clear-sky PMW radiances into operational
NWP models is now routine because of its lower retrieval un-
certainties and clear positive impact on model performance,
effective assimilation of non-clear-sky and overland PMW radi-
ances into NWP models remains a challenge (Errico et al. 2007;
Geer et al. 2017; Bonavita et al. 2020).

Since many applications of PMW directly incorporate un-
certainties via Bayesian methods, Bayesian deep learning
(BDL; Kendall and Gal 2017) could provide an alternative to
deterministic deep learning methods that also accounts for
model uncertainty in the weight space. While BDL is more
computationally expensive than deterministic deep learning,
it is capable of capturing both epistemic and aleatoric uncer-
tainty in predictions (Kendall and Gal 2017; Ortiz et al. 2022),
which is not possible using deterministic models. Aleatoric
uncertainty captures noise inherent in the data and is irreduc-
ible (Kiureghian and Ditlevsen 2009). Epistemic uncertainty
captures uncertainty in the model parameters and can be re-
duced given enough data (Kiureghian and Ditlevsen 2009;
Kendall and Gal 2017). In this work, we focus only on model-
ing epistemic uncertainty.

Additionally, BDL is more robust against overfitting on
training data distributions in comparison with deterministic
deep learning, resulting in models that generalize better to un-
seen data (Neal 2012). Kendall and Gal (2017) demonstrate
that Bayesian deep learning methods improve performance
of neural networks while providing uncertainty estimation on
predictions. Orescanin et al. (2021) and Ortiz et al. (2022)
demonstrated both the uncertainty quantification and the util-
ity of expressing uncertainty for precipitation type classifica-
tion by applying BDL to the GMI dataset. In this work, we
explore a more complex regression problem of predicting syn-
thetic microwave brightness temperatures.

Multiple ways to construct a Bayesian model architecture
are possible, and whether the choice of Bayesian architecture
impacts predictive skill is unclear. Therefore, this study has
three main scientific objectives:

1) Quantify errors in predicted synthetic passive microwave
brightness temperatures using a deterministic model trained
on a dataset of limited size.

2) Ascertain whether predictive skill is sacrificed relative to
a deterministic model when using BDL to quantify vari-
ance (a metric of uncertainty), and

3) Explore how the choice of Bayesian architecture impacts
predictive skill and interpretation by focusing on the cali-
bration of predictive error and uncertainty.

To achieve these objectives, we first extract information
from infrared radiances to generate synthetic passive micro-
wave data by using residual network (ResNet) deep learning
models (section 3a). We then provide additional evidence
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that deterministic ResNets can be adapted to Bayesian Re-
sNets without loss of skill and with the added benefit of quan-
tified uncertainty (section 3b). Next, we show to what extent
each choice of Bayesian architecture is well calibrated, such
that we can infer expected error from predictive variance
(section 3c). Finally, we demonstrate how the quantified
uncertainty from Bayesian ResNets can be used to select low-
error synthetic passive microwave data for downstream appli-
cations that depend on PMW data (section 3d).

The current article is primarily intended as an early proof
of concept of our method. The results herein are highly en-
couraging and demonstrate the applicability of BDL to re-
gression tasks applied to multispectral satellite observations.
As explained and illustrated in the following sections, how-
ever, additional steps can be taken to improve predictions in
locations where the model presented lacks skill.

2. Data and methods

a. Data, labeling, and dataset description

The fundamental task presented is prediction of GMI
brightness temperatures using multispectral infrared radian-
ces observed by the ABI. The ABI observes upwelling radia-
tion from Earth in 16 different wavelength bands (Schmit
et al. 2005). Bands 7–16 were used in this study as our input
features (see Table 1); these correspond to central wave-
lengths between 3.9 and 13.3 mm that are emitted by Earth’s
surface and its atmosphere and, with the exception of band 7,
contain negligible solar radiation reflected off of Earth. Dif-
ferences in the radiance detected in these bands are strongly
impacted by the temperature of Earth’s surface, the vertical
structure of temperature and humidity in the atmosphere, and
the presence and properties of clouds. The same factors also
impact passive microwave brightness temperatures; therefore,
we expect that ABI data alone contains information that will
allow us to make accurate predictions of GMI brightness tem-
peratures, at least in noncloudy regions.

In this study, we first use deterministic ResNets to predict
GMI brightness temperatures derived from upwelling radia-
tion detected from low-Earth orbit for each of the 13 frequen-
cies contained in Table 2. The deterministic models provide a
baseline for comparison to evaluate the performance of
Bayesian models. We then use Bayesian ResNets to predict a

subset of GMI brightness temperatures to test whether predictive
skill is consistent between deterministic and Bayesian ResNets at
the following central frequencies at vertical polarization: 1836 3,
166, 36.6, and 23.8 GHz; 166- and 183 6 3–GHz brightness tem-
peratures are known to be useful for data assimilation into nu-
merical models (Pu et al. 2019), and 36.6 and 23.8 GHz are
potentially useful for revealing tropical cyclone core structure
(Slocum and Knaff 2020). For completeness, one type of Bayes-
ian implementation was used to train one model for each of the
13 GMI frequencies (see appendix for results).

Data labeling began by collocating GMI and ABI observa-
tions. Only 10% of all GMI swaths (every 10th GMI swath
starting from the first one observed on 1 January 2020) during
the study period were collocated with ABI observations to
keep the training dataset size manageable given our comput-
ing resources. This training strategy also mitigates concerns of
inadvertently introducing spurious inferencing relationships
from synoptic decorrelation time-scales, since we only retain
approximately 1–2 GMI swaths per day, and the fraction of
observations sampling within 0.018 of a given location within
three days in the training dataset is approximately 0.3%. The
distributions of observed GMI brightness temperatures in the
data used in this study are shown in Fig. 1. Once matched,
39 3 39 pixel patches of ABI bands 7–16 were labeled using
the corresponding GMI pixel at the center of the patch. These
label–feature pairs were accompanied by geolocation, the
viewing angle, a 39 3 39 matrix of surface type flags (ocean/
land), and a unique integer identifier. Any records located far
on the limbs (west of 1408W or otherwise within 20 data pixels
from the edge of the available data) of the ABI viewing disk
were discarded. Based off of our previous work that identified
significantly different data distributions when using GMI data
to predict precipitation type over land versus predicting pre-
cipitation type over ocean (Ortiz et al. 2022), we also dis-
carded records that had center pixels over land.

For our experiments, we used data from January, February,
and May 2020. Three full days from the month of January
were randomly selected for a validation dataset, and an addi-
tional three days in January were randomly selected for a test

TABLE 1. Infrared ABI bands used in this study. All bands have
a 2-km field of view at nadir (NASA 2017).

ABI band Central wavelength (mm)

7 3.9
8 6.2
9 6.9

10 7.3
11 8.4
12 9.6
13 10.3
14 11.2
15 12.3
16 13.3

TABLE 2. GMI frequencies, polarization, and field-of-view size;
V and H denote vertical and horizontal polarizations, respectively
[from Draper et al. (2015)].

Frequency (GHz) Polarization Field of view (km)

10.65 V 19 3 32
10.65 H 19 3 32
18.7 V 10 3 18
18.7 H 10 3 18
23.8 V 10 3 16
36.6 V 9 3 16
36.6 H 9 3 16
89 V 4 3 7
89 H 4 3 7
166 V 4 3 6
166 H 4 3 6
183 6 3 V 4 3 6
183 6 7 V 4 3 6
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dataset. The remaining days in January were used to create
a training dataset. We created two additional datasets for
posttraining evaluation to test the ability of our model to
retain accuracy on unseen data from the future: one using
data from the first week of February, and one using data
from the first week of May 2020. In other words, no data

collected after January was used in training and model
development.

Given the real-world nature of our data, the resulting training
dataset exhibits inherent imbalance in both the label (GMI pix-
els) and input features (ABI channels). Training on imbalanced
datasets can lead to developing overconfident models biased

FIG. 1. Histograms of the GMI Tmw
b labels from the January training dataset with bins of size 1 K. The y axis is in

logarithmic base-10 scale. Red lines mark the highest and lowest Tmw
b value contained in the dataset for each GMI fre-

quency and are labeled with the corresponding value.
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toward the most represented values in the dataset. To manage
the imbalanced nature of the data one can include a custom loss
function that weighs more learning on underrepresented values
as is commonly done with image classification (Filos et al. 2019;
Leibig et al. 2017). However, for regression, such an approach
would require estimating a weighting curve over the continuous
range of labels (Ebert-Uphoff et al. 2021) and would include
multiple hyperparameters that would require evaluation.

Rather, in this work we focus on producing a more balanced
dataset by sampling data with replacement for GMI tempera-
ture labels with low occurrence (see Fig. 2). For each GMI
band, we binned the temperature label occurrences, using 1 K
increments for bin sizes. We randomly selected 65% of the sam-
ples with the most frequently occurring label and made them
part of our training set. For all remaining bins, if the number of
samples was greater than or equal to 1% of the total number of
samples in the dataset, we randomly sampled data with replace-
ment to reach the same threshold. If the number of samples
was less than 1% of the total number of samples in the dataset,
the samples were included in the dataset but the bin was not up-
sampled. The end result was a training set with an equal num-
ber of samples in all label bins except for the bins in the tails of
the original data distribution (not shown). Moreover, we used
NumPy to reshape (not transpose) each input from 10 3 39 3

39 to 393 393 10, preserving the volume-based information.

b. BDL

The recent rise of deep learning applications in remote
sensing applications is driven by the nonlinear modeling abil-
ity of neural networks that enables recognizing complex pat-
terns and relationships better than the classical parametric
modeling approach informed by physics. However, the major-
ity of deep learning models currently used across remote sens-
ing applications lack the ability to provide uncertainty in
prediction. BDL combines the nonlinear modeling power of
deep learning with Bayesian inference (Blei et al. 2017) en-
abling machine learning models to provide information about

uncertainty in prediction. Assuming a supervised learning
setup and a regression task of predicting a continuous value, a
training dataset is defined as D5 {xn ,yn}Nn51, where N repre-
sents the dataset size, xn represents an input feature vector
(where xn 2 Rm 5 [x1,n, x2,n, … , xm,n]) and yn represents the
corresponding label (where yn 2R).

We assume that a neural network model with L layers is pa-
rameterized by the set of weights w5 {Wi}Li51. If one assumes
a prior distribution over neural network parameters p(w),
then the goal of Bayesian method is to quantify a posterior
distribution over the network parameters p(w|D) conditioned
on the distribution of the training data, p(D):

p(w|D) 5 p(D|w)p(w)
p(D) 5

p(D|w)p(w)�
p(D w)p(w) dw:| (1)

The denominator in Eq. (1) often has no closed form solution
and is computationally intractable (Blei et al. 2017). As a re-
sult, an approximation of the p(w|D) is computed instead.

Variational inference is one method of posterior approxi-
mation that involves an optimization problem to identify the
parameters u of a distribution in a family of distributions
qu(w) 2 Q that has the smallest Kullback–Leibler divergence
(KL) from the target distribution, p(w|D):

KL[qu(w)‖p(w|D)] 5
�
qu(w) log

qu(w)
p(w|D) dw: (2)

However, Eq. (2) still contains p(w|D), which is intractable.
To solve the optimization problem without explicitly calculat-
ing p(w|D) , Eq. (2) can be rewritten as (Dürr et al. 2020)

KL[qu(w)‖p(w|D)] 5 log p(D) 2
�
qu(w) log

p(w)p(D|w)
qu(w)

dw
︸��������������︷︷��������������︸
Evidence Lower Bound (ELBO)

:

(3)

FIG. 2. Label data distributions: (left) The original distribution of 1836 7–GHz Tmw
b . (center) The resulting label distribution after the

downsampling to 65% of the most populated bins. (right) The resulting uniform distribution after upsampling with replacement.
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Since the first term of Eq. (3) does not depend on qu, it can be
ignored to solve the minimization problem. Instead, the mini-
mization problem is solved by maximizing the second term in
Eq. (3), the evidence lower bound (ELBO). The ELBO is a
tractable substitute used in practical application. The resulting
optimization problem is (Dürr et al. 2020)

u* 5 argmax
u

�
qu(w) log

p(w)p(D|w)
qu(w)

dw: (4)

In practice, rather than maximizing the above expression, we
minimize the negative ELBO in the process of optimization.

The goal of inference with BDL is to make a prediction, ŷn,
for each new input xn. Each ŷn is calculated by using Monte
Carlo integration with T samples of the weight distribution to
make T predictions for each xn (Feng et al. 2021; Filos et al.
2019). For this study, we followed the approach described in
Filos et al. (2019) and chose T 5 100. Using our Bayesian
models, we made 100 predictions ŷt for each input and calcu-
lated ŷn as

ŷn 5
1
T
∑
T

t51
ŷt(xn, wt): (5)

Since the weights of the models are distributions, each wt is
different, and ŷn is the average predicted value (referred to as
Monte Carlo integration). This results in additional computa-
tion cost that is at least linear in the size of T in comparison
with deterministic deep learning models that only make a sin-
gle prediction per input; however, as a by-product of Monte
Carlo integration, the uncertainty of each prediction is easily
quantified.

Providing a measure of epistemic uncertainty, the same T
predictions were also used to estimate the variance of ŷn
(Harris et al. 2020):

Var(ŷn) 5
1
T
∑
T

t51
[ŷt(xn ,wt) 2 ŷn]2: (6)

To provide a measure of uncertainty in the same units of the
GMI labels and the model predictions (Kelvin), the mean
standard deviation (MSD) for a set of predictions, ŷ, of size N
was calculated using the variance from Eq. (6):

MSD(ŷ) 5 1
N
∑
N

n51

											
Var(ŷn)

√
: (7)

c. Approaches to variational inference

The training of a neural network using Eq. (4) requires the
calculation of the derivative of the ELBO with respect to
both u and w. One approach to calculating this derivative is to
sample from the distribution qu(w) and then average over the
samples, referred to as Monte Carlo estimation (Mohamed
et al. 2020). However, Monte Carlo estimation can yield gra-
dients with high variance that inhibit a model from learning
(Kingma et al. 2015); Kingma et al. (2015) introduced a computa-
tionally efficient method, known as the local reparameterization

trick (LRT), that reparameterizes qu(w) such that the variance
is reduced. A drawback to the LRT is that the training exam-
ples in a minibatch share the same weight distribution parame-
ters that results in correlated gradients, limiting the variance
reduction gained through using larger minibatches. To decor-
relate these gradients, Wen et al. (2018) introduced the Flipout
method. The Flipout method is computationally more expen-
sive than the LRT, but it produces lower variances as the size
of the minibatch is increased.

Assuming a Gaussian distribution over qu(w), using the
Flipout method effectively doubles the number of parameters
that must be learned relative to a deterministic neural net-
work. However, it is possible approximate variational inference
using a deterministic network and the dropout regularization
technique. Srivastava et al. (2014) introduced a regularization
technique for training neural networks whereby each network
weight is set to zero with probability p (we set p to 0.2) each
time the weights are sampled for training, resulting in a model
with fewer connections between neurons (roughly 80% fewer
for our models). Gal and Ghahramani (2016) proved that using
L2 regularization in conjunction with dropout during inference
is equivalent to variational inference. This approach is known
as Monte Carlo (MC) Dropout. In contrast to the other two ap-
proaches, MC Dropout models do not contain a direct repre-
sentation of the weight distributions. In this work, we use all
three of the above approaches, which are implemented as part
of the TensorFlow software library (Abadi et al. 2015), as de-
scribed in the next section.

d. Model architecture

A residual network (ResNet), version 2 (He et al. 2016),
with 58 convolutional layers (see Fig. 3a) was chosen as a rep-
resentative deterministic architecture to predict the brightness
temperatures from GMI input data, based on the precipita-
tion classification results in Orescanin et al. (2021) using simi-
lar data. The key feature of ResNets is the skip connection
within each ResNet block (see Fig. 3). The skip connections
are identity functions that allow information to be propagated
directly to a layer from any preceding layer in the neural net-
work. This architecture enabled deeper convolutional neural
networks to be trained than was previously possible (He et al.
2016). For our networks, we stacked the ResNet blocks de-
picted in Fig. 3a until our models had a total of 58 convolu-
tional layers, consisting of 19 ResNet blocks and an additional
convolutional layer immediately after the input layer. Each of
these layers is built into Tensorflow; for our experiments, we
used Tensorflow graphical processing unit (GPU), version 2.4.

By following the approach in Tran et al. (2019), Bayesian
ResNet architectures were adopted in an identical configura-
tion as the deterministic architecture. The changes to the de-
terministic architectures required to develop the Bayesian
models are highlighted in yellow in Figs. 3b–d. For the Flipout
and Reparameterization models, we conducted a one-for-one
replacement of deterministic convolutional layers with either
Flipout (Wen et al. 2018) or Reparameterization (Kingma
et al. 2015) convolutional layers contained in the Tensorflow
Probability library, version 0.12.1 (Dillon et al. 2017). We
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constructed our MC Dropout models by placing Dropout
layers (built into Tensorflow 2.4) immediately after each acti-
vation layer in the original deterministic model. Dropout is
applied both during training and during inference (Gal and
Ghahramani 2016).

e. Training methodology

At the start of the training process, the model weights were
initialized using He initialization (He et al. 2016). Each model
used the Adam optimizer (Kingma and Ba 2017) with a start-
ing learning rate of 0.001. To conduct learning rate annealing,
the validation loss was monitored throughout training (Li et al.
2019). If the validation loss did not improve from the best re-
corded validation loss after 5 consecutive epochs, the learning
rate was reduced by a factor of 4. An early stopping strategy
was employed to regularize for overfitting (Goodfellow et al.
2016). If early stopping did not occur, training would have
continued for a total of 500 epochs. Our Bayesian models, us-
ing a batch size of 2048, required approximately 1.5–3 days to
train using 4 NVIDIA RTX 8000 48GB GPUs per model. To
support fair benchmarking, both deterministic and Bayesian
models were trained with the same strategy. In relative terms,
it took roughly twice as long for the Flipout models to train
than the models using the LRT, which is consistent with the
findings in Wen et al. (2018). Training time for the MC

Dropout models fell in between the training times of the other
two model types. Unsurprisingly, the deterministic models
trained faster than all three Bayesian methods.

f. Well-calibrated uncertainty

A model must be well calibrated in order to infer a likely
amount of error from a predicted variance. According to Filos
et al. (2019), if the performance of a model improves as more
high-uncertainty predictions are discarded, then the model
has well-calibrated uncertainty. Therefore, for a well-behaved
model, as we decrease the standard deviation threshold for
discarding data [i.e., we reduce the amount of data used to
calculate mean absolute error (MAE) to include only low-
standard-deviation predictions], the MAE should also de-
crease. In other words, a well-calibrated model is one that has
a positive, monotonic relationship between the mean absolute
error and percent of predictions retained.

Examples of model calibration are shown in Fig. 4, where
the lowest 1% percent of predictions retained represent only
the top 1% of predictions with the lowest uncertainty and
100% percent of predictions retained represents all predic-
tions. Figure 4a represents an example of an uncalibrated
model because it depicts a negative, monotonic relationship
between MAE and percent of predictions retained until ap-
proximately 90% of predictions are retained with a slight

FIG. 3. A depiction of the deterministic and Bayesian network architectures. Inside each dashed rectangle is a single ResNet block. The
adaptations from the deterministic model to create our Bayesian models are highlighted in yellow.
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increase in MAE thereafter. At best, the relationship between
error and uncertainty is weak for this model, which means
that predicted variance could not be used at all as proxy for
unknown absolute error in downstream applications.

Figure 4b represents an example of a poorly calibrated
model, where the MAE decreases until approximately 50% of
predictions are retained and then increases as more predic-
tions are retained. This model has a stronger relationship be-
tween error and model uncertainty than in Fig. 4a because the
most uncertain predictions (far right) correspond to a higher
amount of error; however, the decrease at the far left means
that the model makes predictions with low uncertainty but
high error. This scenario of both very low and very high un-
certainty predictions corresponding with high error is still
problematic for downstream applications that would use pre-
dicted variance as a proxy for unknown absolute error. In
both of these two cases, neither model produces quantified
uncertainty that meets the definition from Filos et al. (2019).

Figure 4c represents a well-calibrated model, because it de-
picts a positive, monotonic trend as an increasing number of
predictions are retained to calculate the MAE. This model
does meet the definition of well-calibrated uncertainty, mak-
ing it a better candidate for real-world deployment than the
other two models. As demonstrated in our previous work
(Orescanin et al. 2021; Ortiz et al. 2022), having a deployed
model with well-calibrated uncertainty is desirable since the
true label (Tmw

b ) is unknown during live inference and the pre-
dictive error cannot be calculated. For deployed models with
well-calibrated uncertainty, a prediction with high standard
deviation likely has a high amount of error; conversely, a pre-
diction with low standard deviation likely has a low amount of
error.

3. Results and discussion

a. Deterministic ResNets

We trained one deterministic model for each GMI fre-
quency as outlined in section 2a. The results of these experi-
ments, using the January test dataset, are captured in Table 3.
MAE was smallest at the 183 6 3–GHz bands (1.71 and 2.31 K)
and was largest for 89 GHz horizontal (13.70 K). The magnitude
of MAE generally corresponded to the frequency of occurrence
of observed Tmw

b in the tails of distributions (Fig. 1), with wide
and more uniform distributions unsurprisingly posing a greater
challenge to the model. Because the ocean is a poorer emitter of
horizontally polarized microwave radiation, observed horizon-
tally polarized Tmw

b over ocean in clear-air is much lower than
vertically polarized Tmw

b at the same frequency, causing wider
distributions of Tmw

b . Therefore, for each frequency sampled in
both horizontal and vertical polarizations, the horizontal polari-
zation model produced more error than the corresponding verti-
cal polarization model. While the ranges of observed Tmw

b were
large for the 166- and 183 6 3–GHz bands, the frequency of
Tmw
b observed was low in the observed distribution’s tails at low

brightness temperatures. In other words, for bands in which the
observed Tmw

b distribution has lower variance, our models pro-
duce synthetic Tmw

b with less error.
To evaluate the temporal persistence of skill in our models,

we generated Tmw
b predictions for data collected in the next

month (February) and 4 months later (May). Table 4 contains
the results of using each model to predict Tmw

b using ABI bright-
ness temperatures Tir

b collected daily from 1 to 7 February 2020
(see section 2a). The absolute error amplitude for predictions in
this dataset was lower for 18.7 GHz (vertical), 23 GHz, and
89 GHz (vertical) (1.5%, 5.5% and 0.3% decrease, respectively)
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FIG. 4. (a),(b) An example depiction of uncertainty calibration where the change of MAE is shown as a function of the data retained af-
ter removing a percentage of the most uncertain samples. The uncertainty in (a) and (b) are both not well calibrated, but for different rea-
sons. (c) The general trend in MAE for a model with well calibrated uncertainty.

TABLE 3. Summary statistics of deterministic model performance in terms of MAE, RMSE, and R2 score (the coefficient of
determination) for each GMI channel for the January test set of 723 000 samples.

10.6 GHz 18.7 GHz 23 GHz 37 GHz 89 GHz 166 GHz 183 GHz

Polarization H V H V V H V H V H V 63 V 67 V

MAE 6.93 4.86 12.1 7.50 10.27 13.45 7.03 13.70 6.32 5.79 3.62 1.71 2.31
RMSE 16.52 11.93 18.48 12.64 14.41 20.18 10.30 18.38 8.70 9.40 6.55 2.86 4.61
R2 0.32 0.11 0.19 20.05 0.12 20.06 20.10 0.46 0.57 0.66 0.73 0.90 0.79
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and higher for all other GMI frequencies (8.3% average in-
crease) relative to the January dataset. Relative to the results
from the January dataset, the February dataset produced higher
root-mean-square error (RMSE) for all frequencies (12.8% aver-
age increase) except 23 GHz (4.5% decrease). The models pre-
dicted Tmw

b with the least amount of error for 183 6 3–GHz
channel, with an RMSE of ;3.80 K and an MAE of ;2.01 K.
The 37-GHz (horizontal) model predictions had the highest
RMSE of ;20.74 K, and the 89-GHz (horizontal) model predic-
tions had the highest MAE of;13.97 K.

Table 5 contains the results of using each model to predict
Tmw
b from Tir

b collected daily at a much later date, from 1 to
7 May 2020. Similar to the results using the February dataset,
the error amplitude for predictions in this dataset was higher
for all but one GMI frequency relative to the January dataset
but up to 50% higher for the 10.6-GHz (horizontal) band.
Relative to the results from the February dataset, the models
generated lower error for 183 6 7–GHz vertical (decrease in
MAE and RMSE by 9.5% and 5.0%) and higher error for the
remaining frequencies (average increase in MAE and RMSE
of 15.9% and 22.5%). The models still predicted Tmw

b with the
least amount of error for 183 6 3–GHz (vertical) channel,
with an RMSE of 3.85 K and an MAE of 2.05 K. The 37-GHz
(horizontal) model predictions contained the greatest amount
of absolute error with an MAE of 14.46 K; however, it did not
have the highest RMSE (22.31 K). The vertical channels at
10.6 and 18.7 GHz had higher RMSE of 27.88 and 25.78 K,
which surpasses the horizontal 37-GHz error. These two chan-
nels have the least atmospheric opacity in clear-air and are
thus most sensitive to the surface; therefore, we speculate that
the disproportionate increase in error for these two GMI
channels may partially result from a warmer surface and
lower-tropospheric temperatures that occur in May and are
not represented in the training dataset.

Since there is a large range of MAE (1.7–14.5 K) reported
in Tables 3–5, a question remains whether the highest errors
found in the 37-GHz channel are due to an ill-fitting model or
whether predicting 37-GHz Tmw

b from IR data is a more chal-
lenging regression task than predicting Tmw

b of other PMW
frequencies. To assess the extent of physically consistent

relationships learned by the deterministic models, Fig. 5
shows examples of Tmw

b predictions and absolute error from
the models with lowest MAE (183 6 3 GHz) and highest
MAE (37 GHz H) on 1 February 2022. The 183 6 3–GHz
predictions have considerable skill, with many clear-sky pre-
dictions having absolute error less than 1 K. While predictions
in cloudy/precipitating scenes can have error in excess of 3.4 K
(2 times the MAE for 1836 3–GHz predictions), the determin-
istic models are still able to capture that the coldest Tmw

b s occur
in the convection between Florida and Cuba. This result is ex-
pected, because both the 183 6 3–GHz channel and ABI band
8 (6.2 mm) are highly sensitive to mid- to upper-level water va-
por. In contrast, the 37-GHz H model predictions have much
higher absolute errors, in excess of 26.8 K (2 times the MAE for
horizontal 37-GHz predictions). However, Fig. 5 indicates that
the horizontal 37-GHz model is able to consistently capture
clear-sky predictions with error less than 4 K, and the cloudy
and precipitating scenes correctly have warmer Tmw

b than the
surrounding environment. Additionally, the 37-GHz H model
correctly predicts the approximate locations of where the warm-
est Tmw

b magnitudes occur, such as near the equator, between
Florida and Cuba, and north of the Bahamas, although the mag-
nitudes of the predictions are lower than observed values. To-
gether, Fig. 5 suggests that the 37-GHz H model is not entirely
ill-fitting since it has learned many physically consistent relation-
ships and model skill appears to be consistently high in clear-sky
regions. Instead, the large MAE at 37 GHz is more likely to be
due to more complex relationships between how infrared and
microwave radiation interact with liquid water and ice in com-
parison with other PMW frequencies. We speculate this because
model performance degrades most in regions where 37-GHz
and IR-wavelength observations are expected to be most differ-
ent, such as within clouds, because in cloudy regions a single in-
frared brightness temperature can correspond to a wide range
of 37-GHz brightness temperatures. Therefore, it is plausible
that our model is simply making predictions in the center of ob-
served Tmw

b distributions in its best effort to minimize its loss
function, which suggests that additional input features (e.g., visi-
ble radiances) may be required to drive significant improvement
in model performance.

TABLE 4. As in Table 3, but for the February test set of 857 000 samples.

10.6 GHz 18.7 GHz 23 GHz 37 GHz 89 GHz 166 GHz 183 GHz

Polarization H V H V V H V H V H V 63 V 67 V

MAE 7.04 5.40 12.31 7.39 9.71 13.73 7.15 13.97 6.30 6.30 4.10 2.01 2.72
RMSE 16.67 13.21 19.64 12.92 13.76 20.74 10.76 19.18 8.82 10.86 8.18 3.80 5.91
R2 0.44 0.11 0.27 0.12 0.29 0.13 0.08 0.36 0.50 0.55 0.61 0.84 0.69

TABLE 5. As in Table 3, but for the May test set of 925 500 samples.

10.6 GHz 18.7 GHz 23 GHz 37 GHz 89 GHz 166 GHz 183 GHz

Polarization H V H V V H V H V H V 63 V 67 V

MAE 10.55 6.59 13.77 9.28 11.52 14.46 7.36 14.07 6.82 6.92 4.38 2.05 2.50
RMSE 27.88 17.89 25.78 17.63 16.46 22.31 11.64 19.01 9.53 11.44 8.45 3.85 5.68
R2 20.06 20.09 0.00 20.27 0.22 20.02 20.08 0.37 0.47 0.50 0.57 0.80 0.66
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Together, these results indicate it is possible to take a step
toward much higher spatiotemporal resolution than is cur-
rently available using real GMI observations by using deep
learning models, especially for higher GMI frequencies. How-
ever, while deterministic models have the benefit of being rel-
atively computationally inexpensive, they have an intrinsic
limitation that there is no way to assess predictive uncertainty
or error in the absence of validation data. Therefore, for the
remainder of this study, we utilize Bayesian deep learning,
which predicts both the magnitudes of GMI brightness tem-
peratures and the variance in each prediction for our regres-
sion task.

b. Comparison of deterministic and Bayesian
model errors

For the remainder of this article, we narrow the focus to
only a few GMI channels as representative examples and in-
vestigate the performance of three different types of Bayesian

models in comparison with the deterministic ResNet results
revealed in section 3a. We used a deterministic ResNet as the
base model architecture (see Fig. 3) and trained three Bayes-
ian models each (Flipout, MC Dropout, and Reparameteriza-
tion) for the vertically polarized 23, 37, 166, and 1836 3–GHz
GMI channels (the vertical polarization is implicit for Bayes-
ian models hereinafter). Table 6 contains the RMSE and
MAE results of using the deterministic model and each
Bayesian model to predict Tmw

b from ABI radiances collected
on 8, 21, and 26 January 2020 (the three random days in our
test dataset; see section 2a). Both deterministic and Bayesian
models predicted 183 6 3–GHz Tmw

b with the least amount of
error, with an RMSE of 2.84–2.95 K and an MAE of 1.66–
1.84 K. The 166-GHz predictions were more prone to error
with an RMSE of 6.25–6.54 K and an MAE of 3.63–3.83 K.
The 37-GHz predictions were even more prone to error than
166 GHz with an RMSE of 10.11–10.90 K and an MAE of
7.02–7.67 K. The 23-GHz predictions contained the greatest
amount of error with an RMSE of 13.71–17.04 K and an
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FIG. 5. GMI swath at (top) 183 6 3 and (bottom) 37 GHz (horizontal) around 1440 UTC 1 Feb 2022 (GPM orbit number 33679):
(a) observed Tmw

b , (b) predicted Tmw
b from the deterministic ResNet model, and (c) prediction error.
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MAE of 10.42–12.23 K. Together, these results indicate that
the Bayesian and deterministic models produce similar errors
in January for a given GMI channel. Furthermore, Table 6
also reports the MSD for the Bayesian models, because the
model parameter (epistemic) uncertainty is measurable using
the 100 predictions made per input [see Eq. (6)]. For all fre-
quencies except 37 GHz, the Reparameterization models are
the most uncertain (had largest MSD) in their predictions, fol-
lowed by the MC Dropout models and the Flipout models
(least uncertain and lowest MSD). For 37 GHz, MC Dropout
had the highest uncertainty, followed by Reparameterization,
and Flipout still being the least uncertain in its predictions.

To evaluate whether the Bayesian models perform better or
worse over time since training data, we repeated the Tmw

b predic-
tions for data collected in the next month (February) and four
months later (May). Table 7 contains the results of using each
model to predict Tmw

b using ABI brightness temperatures Tir
b

collected daily from 1 to 7 February 2020 (see section 2a). The
error amplitude for predictions in this dataset was higher for
183 6 3 and 166 GHz (;16% and ;28.9% increase in MAE
and RMSE), comparable for 37 GHz (;0.36% decrease in
MAE and ;3.1% increase in RMSE), and lower for 23 GHz
(;12.7% and;11.3% decrease in MAE and RMSE) relative to
the January dataset. The models predicted Tmw

b with the least
amount of error for the 183 6 3–GHz channel, with an RMSE
of 3.61–3.79 K and anMAE of 1.94–2.10 K. The 166-GHz model
predictions were more prone to error with an RMSE of 8.06–
8.48 K and an MAE of 4.19–4.48 K. The 37-GHz predictions
were even more prone to error than 166 GHz with an RMSE of
10.76–11.11 K and an MAE of 7.17–7.36 K. The 23-GHz model
predictions contained the greatest amount of error with an
RMSE of 12.03–14.40 K and an MAE of 8.96–10.05 K. As com-
pared with the January results, all models make predictions with
a similar amount of error for a given GMI frequency. Addition-
ally, for all frequencies except 37 GHz, the Reparameterization

models are the most uncertain in their predictions, followed by
the MC Dropout models and the Flipout models (least uncer-
tain). For 37 GHz, MCDropout had the highest uncertainty, fol-
lowed by Reparameterization, and Flipout still being the least
uncertain in its predictions.

Table 8 contains the results of using each model to predict
Tmw
b from Tir

b collected daily at a much later date, from 1 to
7 May 2020. The error amplitude for predictions in this data-
set were higher for all four GMI frequencies relative to the
January dataset. Relative to the results from the February da-
taset, the models generated an additional ;5% MAE and
RMSE on average. The models predicted Tmw

b with the least
amount of error for 183 6 3–GHz channel, with an RMSE of
3.64–3.77 K and an MAE of 2.00–2.14 K. The 166-GHz
model predictions were more prone to error with an RMSE
of 7.79–8.24 K and an MAE of 4.11–4.38 K. The 37-GHz
predictions were even more prone to error than 166 GHz
with an RMSE of 11.34–12.03 K and an MAE of 7.41–7.75 K.
The 23-GHz model predictions contained the greatest
amount of error with an RMSE of 14.31–16.29 K and an
MAE of 10.11–11.46 K. In general, most Bayesian model predic-
tions in May were slightly more accurate than corresponding de-
terministic model predictions, excluding those at 37 GHz. In
terms of uncertainty, Table 8 indicates the same trends seen in
January and February; the Flipout model predictions are least
uncertain and the Reparameterization model is most uncertain.

Overall, the Bayesian models we trained generated compa-
rable error to their deterministic counterparts. This means
that we can use our Bayesian models where deterministic
models might normally be used. Additionally, the overall
smaller change in Bayesian model error relative to determin-
istic models from January to May reported in Tables 6–8 is
significant because it indicates that the Bayesian models gen-
eralize to unseen data better than our deterministic models.
Moreover, this reinforces the findings in the existing literature

TABLE 6. Summary statistics of Bayesian model performance in terms of RMSE, MAE, and MSD for the test set of 723 000
samples during January. Models shown predict brightness temperatures from the vertical 183 6 3–, 166-, 37-, and 23-GHz GMI
channels. For each GMI channel shown, there are four model configurations: the deterministic ResNet (Det ResNet) as shown in
section 3a and three types of Bayesian models}Flipout, MC Dropout, and Reparameterization (Reparam).

183 6 3 GHz V 166 GHz V 37 GHz V 23 GHz V

Model RMSE MAE MSD RMSE MAE MSD RMSE MAE MSD RMSE MAE MSD

Det ResNet 2.86 1.71 } 6.55 3.62 } 10.30 7.03 } 14.41 10.27 }

Flipout 2.84 1.66 0.48 6.54 3.83 1.30 10.90 7.67 1.15 17.04 12.23 2.08
MC Dropout 2.95 1.84 0.81 6.37 3.63 1.48 10.83 7.36 2.57 15.81 11.13 3.84
Reparam 2.84 1.70 1.56 6.25 3.63 2.49 10.11 7.02 1.71 13.71 10.42 6.02

TABLE 7. As in Table 6, but with data from February with 857 000 samples.

183 6 3 GHz V 166 GHz V 37 GHz V 23 GHz V

Model RMSE MAE MSD RMSE MAE MSD RMSE MAE MSD RMSE MAE MSD

Det ResNet 3.80 2.01 } 8.18 4.10 } 10.76 7.15 } 13.76 9.71 }

Flipout 3.62 1.94 0.52 8.42 4.48 1.36 10.83 7.36 1.21 14.40 10.05 2.07
MC Dropout 3.79 2.10 0.90 8.48 4.19 1.72 11.11 7.30 2.75 13.86 9.75 4.08
Reparam 3.61 1.97 1.56 8.06 4.28 2.66 10.76 7.17 1.84 12.03 8.96 6.12
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that Bayesian neural networks are more robust to overfitting on
training data (Neal 2012; Filos et al. 2019; Gal and Ghahramani
2016). The Bayesian models also provide the additional benefit
of quantifying the uncertainty of each prediction, and results
indicate that predicted uncertainty tends to either remain con-
sistent or slightly increase from January to May. Since this
presented uncertainty is epistemic, we expect that it is reduc-
ible with additional training data. Furthermore, the predicted
uncertainty can be useful in selecting synthetic GMI data for
ingestion by downstream applications if the uncertainty is
well calibrated.

c. Uncertainty calibration of Bayesian ResNets

While having an accurate model is desirable, having a high
degree of calibration between predicted variance and error is
also very important for downstream applications that utilize
uncertainty estimates (e.g., section 2f). Figure 6 demonstrates
the degree of calibration between error and uncertainty for
each Bayesian model and example GMI channel by depicting
the MAE calculated using a variable percentage of the Janu-
ary test data based on predicted standard deviation. For ex-
ample, if only 80% of test data is used, predictions with
standard deviation above the 80th percentile among standard
deviations at all data points are excluded. The orange, hori-
zontal, dashed line shows the MAE of each corresponding de-
terministic ResNet model as a benchmark for reference. The
other lines depict the MAE for each Bayesian model using
the percentage of the data retained, which is denoted by the
abscissa value. To calculate the ordinate values, the standard
deviation of each prediction is used to determine the standard
deviation value for each percentile. Predictions with a stan-
dard deviation greater than the allowed threshold are dis-
carded, and the MAE is calculated for the remaining
predictions. For example, in Fig. 6b, 80% of the predictions
using the MC Dropout model (purple) have a predictive stan-
dard deviation less than or equal to 1.65 K. The corresponding
MAE is 2.53 K, which is 70% of the 3.63 KMAE that occurred
when no standard deviation threshold was used (Table 6).

Using the definition of well-calibrated uncertainty from Filos
et al. (2019) as described in section 2f, the curves in Fig. 6a
(183 6 3 GHz) indicate that the Flipout and the MC Dropout
models have well-calibrated uncertainty at 1836 3 GHz, while
the Reparameterization model does not. Both the Flipout
(blue) and MC Dropout (purple) MAE values have a mono-
tonic, increasing relationship as the percent of predictions
retained increases, whereas the Reparameterization model
(green) only has increasing relationships from approximately
1%–5% and 95%–100% of predictions retained, and the

remaining range from approximately 5%–95% of predictions
retained exhibits a decreasing relationship between MAE and
percent of predictions retained. This means that there are
many Reparameterization predictions of 183 6 3–GHz Tmw

b
with higher error that are associated with lower standard devi-
ations, which is unsuitable for downstream applications that
would use standard deviation as proxy for error.

To further demonstrate the differences of model calibra-
tion, an example visual comparison between the poorly cali-
brated Reparameterization and well-calibrated MC Dropout
183 6 3–GHz predictions is illustrated in Fig. 7.1 Figure 7a
shows the actual GMI observations, and Fig. 7b shows the
predictions for the Reparameterization (bottom row) and MC
Dropout (top row) models. Comparison between both model
predictions and the GMI observational truth shows that both
models are capable of producing highly accurate 183 6

3–GHz predictions, similar to the deterministic results shown
in Fig. 5. In addition, both models have similar absolute error
characteristics to the deterministic model, such that clear-sky
Bayesian predictions are also associated with error less than
1 K, and absolute errors may exceed 3.7 K in clouds (Fig. 7c).
Based only on absolute error shown both in Fig. 7c and
Tables 6 and 8, it would be difficult to choose between the
183 6 3–GHz Reparameterization and MC Dropout model
architectures for potential real-time deployment. However, a
comparison between the absolute error and uncertainty in
Figs. 7c and 7d shows that the spatial distribution of MC
Dropout model uncertainty strongly resembles the spatial
distribution of absolute error, whereas the spatial distribu-
tion of Reparameterization uncertainty bears little resem-
blance to the actual error distribution. Furthermore, Fig. 7
shows that for the poorly calibrated 183 6 3–GHz Repara-
meterization model, the absolute highest uncertainty predic-
tions near Florida correspond with high absolute error, and
the lowest uncertainty predictions in the North Atlantic cor-
respond with low absolute error, but uncertainty magnitudes
between these two extremes do not exhibit a consistent
relationship.

However, the degree of calibration for each Bayesian
model is not consistent across all GMI frequencies shown
(Fig. 6). While the Reparameterization model (green) calibra-
tion is poor for 1836 3 and 37-GHz predictions (Figs. 6a,c), it

TABLE 8. As in Table 6, but with data from May with 925 500 samples.

183 6 3 GHz V 166 GHz V 37 GHz V 23 GHz V

Model RMSE MAE MSD RMSE MAE MSD RMSE MAE MSD RMSE MAE MSD

Det ResNet 3.85 2.05 } 8.45 4.38 } 11.64 7.36 } 16.46 11.52 }

Flipout 3.77 2.02 0.52 8.24 4.38 1.31 11.34 7.41 1.23 16.29 11.46 2.10
MC Dropout 3.77 2.14 0.86 8.24 4.29 1.64 12.03 7.75 2.83 15.74 11.17 4.06
Reparam 3.64 2.01 1.62 7.80 4.11 2.67 11.64 7.46 1.90 14.31 10.11 5.85

1 A Jupyter notebook that reproduces the top row of Fig. 7 and
a sample calibration curve using the MCDropout model are avail-
able online (https://github.com/marko-orescanin-nps/Uncertainty-
Calibration-of-PMW). Data required to run the code are linked to
the notebook.
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is actually well calibrated at 166 GHz (Fig. 6b). In contrast, the
MC Dropout model (purple) is well calibrated for 183 6 3–,
166-, and 37-GHz predictions (Figs. 6a–c), but not 23 GHz. In-
stead, the 23-GHz MC Dropout model shows a decreasing
relationship from approximately 3%–25% of predictions
retained. Finally, the Flipout model (blue) is the most well cal-
ibrated across all GMI frequencies shown. Further investiga-
tion of Flipout model predictions of Tmw

b for the remaining
GMI frequencies indicate that the Flipout model is well cali-
brated across all GMI frequencies (not shown).

When all three implementations display similar uncertainty
calibration as if Fig. 6b for 166 GHz, it may be necessary to
use other criteria to choose between Bayesian implementa-
tions. When averaged across the three datasets, the Repara-
meterization model produces the lowest average RMSE and

average MAE at 166 GHz. Moreover, for a homoscedastic re-
gression problem such as this, the negative log-likelihood is
proportional to the mean squared error Dürr et al. (2020).
This means that the Reparameterization model also fits more
closely to the data for 166 GHz. Additionally, the Reparame-
terization model has the fastest training time relative to the
other two Bayesian implementations. However, MC Dropout
is the simplest implementation to code and to train, perhaps
making it a more attractive choice. When the uncertainty
calibration is similar across Bayesian implementation, re-
searchers should consider the error metrics, the negative
log-likelihood (fit to the data), the speed of training, and the
ease of implementation/training when choosing what type of
Bayesian model to put into production or to use for future
experimentation.

FIG. 7. GMI swath at the 183 6 3–GHz channel around 1440 UTC 1 Feb 2022 (GPM orbit number 33679): (a) observed Tmw
b , (b) pre-

dicted Tmw
b from the (top) MC Dropout model and (bottom) Reparameterization model, (c) prediction absolute error, and (d) predictive

standard deviation.
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FIG. 6. Change of MAE as a function of retained low-uncertainty data for deterministic ResNet (dashed orange), Flipout (blue), MC
Dropout (purple), and Reparameterization (green) models. Standard deviation (SD) values for the 80th percentile of predictive standard
deviation of each model are shown in text in each panel; arrows indicate which model each standard deviation describes.
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Together, these results show that while the skill of each
Bayesian model per GMI channel was similar to deterministic
model skill, differences arise between Bayesian model archi-
tecture results when examining the degree of calibration for
each model across the example GMI frequencies shown. Nei-
ther the Reparameterization nor the MC Dropout model ar-
chitectures were well calibrated across all GMI frequencies.
Therefore, these models can only be reasonably applied to-
ward predicting certain GMI frequencies, and thus have a
more limited utility. Only the Flipout model was well cali-
brated across all GMI frequencies shown when using the
January dataset; moreover, we confirmed that the Flipout model
had well-calibrated uncertainty for 183, 166 and 37 GHz using
the February and May datasets (not depicted). For 23 GHz,
the Flipout model had well-calibrated uncertainty using the
February dataset but had a loss of calibration for the May da-
taset for samples with the uncertainty values in the lowest
7%. The Flipout model is therefore the most robust model
architecture for our regression task. Thus, the Flipout model
architecture is the favored choice of Bayesian model archi-
tecture for further model improvement and possible even-
tual deployment. We use the 183 6 3–GHz Flipout model
results to demonstrate a practical application of using the
predictive variance to reduce the amount of error in syn-
thetic GMI data while maintaining high spatiotemporal res-
olution. The appendix contains Flipout model errors and
MSDs of all 13 GMI channels.

d. Combining high spatiotemporal resolution with
quantified uncertainty

Since many downstream applications of PMW data, such as
assimilation of clear-sky PMW brightness temperatures into
numerical weather prediction models, are highly sensitive to
inaccurate Tmw

b magnitudes, having the ability to quickly filter
out the least accurate synthetic Tmw

b predictions prior to as-
similation is very desirable. With deterministic models, this is
only possible when there are collocated GMI observations to
calculate error, which strongly limits the utility of determinis-
tic models. In contrast, the uncertainty of well-calibrated
Bayesian models can be used as a proxy for error even when
no corresponding GMI observations exist, and appropriate
tolerance thresholds of uncertainty can be tailored to down-
stream requirements to reduce the total amount of error of syn-
thetic GMI data that would get ingested by these downstream

applications while still retaining a vast increase of spatiotemporal
resolution relative to existing GMI observations.

As an illustrative case, we use the 80th percentile standard
deviation values derived from the January predictions for
each model depicted in Fig. 6 to discard elements from the set
of February predictions with a standard deviation greater
than the January-derived values. In practice, the standard de-
viation threshold could be selected to suit the needs of down-
stream applications that ingest this synthetic data. Table 9
contains the recalculated metrics for the February 183 6 3–,
166-GHz V, 37-GHz V, and 23-GHz V datasets. The values in
the first row of Table 9 are unchanged from Table 7 since de-
terministic models provide no measure of predictive uncer-
tainty; moreover, all three Bayesian models achieve lower
error metrics on the February data than the deterministic
model does on the January data with the exception of the
Reparameterization model for 183 6 3 GHz, which does not
have well-calibrated uncertainty. When compared with the re-
sults for the same model in Table 7 (February), all three
Bayesian models had a decrease in error for all metrics. This
decrease is larger for the Flipout and MC Dropout models
than for the Reparameterization models. Furthermore, the
difference between the RMSE and the MAE is smaller for all
three Bayesian models, meaning that the magnitude of the
larger errors has decreased. These results reinforce the choice
of the Flipout model for deployment to predict 183 6 3–GHz
Tmw
b because it has the lowest error metrics when compared

with all other models.
To visually demonstrate the impact of combining high spa-

tiotemporal resolution Bayesian model predictions and quan-
tified uncertainty, we highlight results from the most accurate
and well-calibrated model, the 183 6 3–GHz Flipout model.
Figure 8 shows predictions of both Tmw

b and MSD over the
western Atlantic and eastern Pacific on 1440 UTC 1 February
2020. It illustrates the increase of spatial microwave data cov-
erage for a given time period relative to existing observations,
and additional synthetic microwave data and uncertainty can
be predicted at the same time interval as ABI full-disk scans
are available (10–15 min depending on the scanning strategy).
Figures 8b and 8c also shows that the Flipout model predic-
tions tends to have highest uncertainty when Tmw

b is coldest,
which occurs mostly where scattering by hydrometeors in
mid- to upper-tropospheric clouds occurs. Since Fig. 6a previ-
ously established that this model is well calibrated, we can in-
fer that the exact representation of Tmw

b in clouds likely has

TABLE 9. Error and uncertainty metrics for February test set after removing predictions with variance greater than or equal to the
80th-percentile predictive variance value in January data. The variance values for the 80th percentile of each channel are depicted in
Fig. 6. The values for the deterministic ResNet in this table are the same as in Table 7 since deterministic models do not provide
predictive variance.

183 6 3 GHz V 166 GHz V 37 GHz V 23 GHz V

Model RMSE MAE MSD RMSE MAE MSD RMSE MAE MSD RMSE MAE MSD

Det ResNet 3.80 2.01 } 8.18 4.10 } 10.76 7.15 } 13.76 9.71 }

Flipout 2.09 1.46 0.41 4.80 2.87 1.01 9.11 6.02 0.85 12.76 8.78 1.49
MC Dropout 2.17 1.58 0.66 3.80 2.40 1.06 9.34 5.84 1.80 12.28 8.45 2.86
Reparam 3.22 1.85 1.40 5.21 3.03 2.04 9.07 5.84 1.27 10.22 7.53 4.88
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some error over the entire domain, not just where GMI obser-
vations exist.

The same 80th-percentile standard deviation threshold is
then applied to the same predictions shown in Fig. 8, and
three example zoomed-in features are in shown Fig. 9. Specifi-
cally, the three examples of Fig. 9 lie within 158 3 158 areas
centered near Central America (left column), western Cuba
(middle column), and offshore the northeastern United States
(right column). Figure 9a first shows all predictions regardless
of predicted variance magnitudes, as in as in Fig. 8b. Figure 9b
contains the standard deviation associated with each set of pre-
dictions. Using the 80th percentile standard deviation from
Fig. 6b of 0.56 K as a threshold, Fig. 9c contains only predictions
with standard deviation less than this threshold value; other lo-
cations are not filled in and remain white. As expected, Fig. 9c
contains about 80% of the predictions from Fig. 9a, but with
missing predictions in areas that have high associated standard
deviation. Figure 9d contains the ABI data from ABI band 14
(11.2 mm). The areas of high standard deviation appear to cor-
respond closely to areas with thick cloud cover, which is indi-
cated by areas of low Tir

b (brighter grays and white) in Fig. 9d.
However, not all predictions in cloudy regions have the same
level of uncertainty. Many clouds near the Bay of Campeche,
north of 258N near Florida, and near Massachusetts occur in
areas of low predictive uncertainty. These clouds also appear
to be lower altitude and are likely to be optically thinner (see
Fig. 9d) and possibly contain less ice, which suggests that
there may be more skill when there is not significant scatter-
ing by hydrometeors.

Overall, we show that implementing an 80th percentile
threshold leads to a reduction in mean absolute error. If error
and predicted uncertainty are well calibrated, stricter thresh-
olds below the 80th percentile will yield even lower error pre-
dictions. However, there is a trade-off between amount of
data retained versus skill, and exact thresholds can vary on
downstream application tolerances. We also show that an
80th percentile threshold of uncertainty yields primarily filters
out the clouds that are deepest and have the coldest Tir

b mag-
nitudes, but lower clouds with warmer Tir

b magnitudes are
retained.

4. Summary and conclusions

In this study, we developed a total of 34 deterministic and
Bayesian residual network (ResNet) deep learning models for
the regression task of predicting GMI passive microwave
(PMW) brightness temperatures over ocean from GOES-16
ABI infrared brightness temperatures. Deterministic models
were developed for each GMI band, and resulting synthetic
GMI data produced by a model trained on just data from a sin-
gle month (January 2020) has a mean absolute error (MAE) as
low as 1.72 K for a GMI band centered at 183 6 3 GHz. Errors
for GMI channels generally increased as the observed range
and/or variability of the distributions of their brightness temper-
atures increased (Fig. 1 and Table 3), which resulted in errors
that were lower for vertically polarized channels than horizon-
tally polarized ones. GMI channels associated with lower atmo-
spheric opacity (e.g., 10.6–18.7 GHz) also had the greatest
increase in error over time. Together, these deterministic mod-
els also demonstrate how to generate synthetic GMI data with
the same spatiotemporal resolution as ABI, and they establish
a baseline skill for later comparison. However, the determinis-
tic models lack estimates of uncertainty that are used as
weights in downstream meteorological applications, such as
clear- or all-sky retrievals that utilize optimal estimation or
numerical weather prediction models utilizing various data
assimilation methods.

To address the existing need for quantitative uncertainty
estimates, we then adapted three types of Bayesian models
[i.e., Flipout, Monte Carlo (MC) Dropout, and Reparameteri-
zation] from our deterministic ResNet architecture to produce
synthetic GMI data at 23, 37, 166, and 183 6 3 GHz, which
are sensitive in different ways to water vapor, liquid water,
and ice. Comparison of the MAE and root-mean-square error
between corresponding deterministic and Bayesian models re-
veal that model skill is not sacrificed to produce quantitative
estimates of predictive uncertainty when the same training
strategy is utilized. Additionally, our results indicate that the
Bayesian models had a smaller decrease in skill from January
to May and are therefore more robust to overfitting, consis-
tent with the findings of Neal (2012). In addition to error, we
also examine the uncertainty calibration of each of the three

FIG. 8. (a) Observed Tmw
b at 1440 UTC 1 Feb 2020 (GPM orbit number 33679), (b) predicted Tmw

b from the 1836 3–GHz V Flipout model
over a wide area, and (c) predictive standard deviation for each synthetic data point in (b).
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FIG. 9. (a) All model predictions for 183 6 3 GHz using Flipout at 1440 UTC 1 Feb 2022, (b) standard deviation associated with each
prediction, (c) predictions with standard deviation less than the 80th-percentile standard deviation value when predicting on the January
training data (see Fig. 6), and (d) the corresponding ABI data from 11.2-mm band (band 14).
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Bayesian ResNet models; uncertainty must be well calibrated
in order to infer a likely amount of error from predictive vari-
ance. We find that the 183 6 3–GHz Reparameterization
model and the 23-GHz MC Dropout model had a higher
number of predictions with low predictive standard deviation
but high absolute error, and are therefore not well calibrated.
For this reason, we generally favor the Flipout configuration
since it is the most consistently well calibrated across all GMI
channels for which a model was produced.

We used our most accurate Flipout model, for 183 6 3 GHz,
to demonstrate the full benefit of our Bayesian architecture in a
meteorological context. Like the deterministic models, the
Flipout model produced synthetic PMW brightness tempera-
tures at ABI spatiotemporal resolutions over the entire
ocean-only portion of the GOES-16 domain, which may al-
low for new pathways of investigation into the evolution of
individual meteorological features of interest with passive mi-
crowave data in the future. However, the primary benefit
came from the predictive uncertainty quantification, which
generally showed that the presence of clouds increased the
predictive uncertainty in our models. Comparison of variance
across different cloud types in Fig. 9 suggested that lower, rel-
atively warmer clouds, such as those shown off the coast of
Massachusetts, were associated with lower variance than
deeper, relatively colder clouds, such as those shown near
Florida and South America. Without knowledge of the pre-
dictive variance, we would not have known whether predic-
tions without corresponding labels likely had skill.

This decreased skill in clouds may be due to two reasons.
First, the information provided to the model as input features,
infrared brightness temperatures, may be insufficient to fully in-
form a neural network of cloud properties that might contribute
to PMW brightness temperatures in cloudy regions. In particu-
lar, both the fact that the highest predictive variance is associ-
ated with colder, thicker clouds (such as those associated with
deep convection) and that the various 37- and 89-GHz models
had the largest absolute errors suggests that additional informa-
tion is likely needed to gain skill when significant scattering
from ice is present. We speculate that including multispectral
visible radiances/reflectance or products related to microphysi-
cal composition of clouds in our training data would increase
predictive skill. Second, the model may simply have insufficient
data to train on. The general decrease in model skill from
February to May predictions suggests that just including addi-
tional infrared training data over a longer period of time will
likely also help. We also suspect that simply training a model
on more clouds instead of relying on upsampling to produce
unbiased predictions will help reduce error in cloudy regions.
Indeed, ongoing work by the authors indicates that both are
likely true. Because the lowest frequency GMI predictions
(10.6–18.7 GHz) were associated with the highest increase in
error from January to May in deterministic models, we specu-
late that incorporation of surface-based or low-level input fea-
tures (such as sea surface temperature, in optically thick
regions) may also help to further reduce error for these chan-
nels. Together, we expect that making such improvements could
yield a Bayesian model based on our initial proof-of-concept

methodology that produces higher skill in cloudy and precipitat-
ing regimes as well as clear-air regions.

To ascertain whether just additional infrared training data
is sufficient to improve future model skill or whether addi-
tional input features are needed (such as adding visible data),
the predictive variance must be decomposed into its aleatoric
and epistemic components. In this work, we specifically fo-
cused on modeling epistemic uncertainty, which contains in-
formation about the uncertainty in the model and can be
reduced by training on additional data of the same set of fea-
tures. In contrast, aleatoric uncertainty cannot be reduced by
additional data of the same set of features, and a combination
of high aleatoric uncertainty and near-zero epistemic uncer-
tainty implies that additional input features are needed to fur-
ther increase model skill. However, to predict aleatoric
uncertainty modifications to our model architecture are neces-
sary. Ongoing and future work will add this functionality to
our Bayesian model architecture. Additionally, future work
will also explore predicting more realistic, nonparametric er-
ror distributions, since our current models assume that predic-
tive error distributions are Gaussian.

The results presented provide additional evidence that
deep learning in combination with Bayesian models have po-
tential to provide additional high-value information content
in meteorological applications (Orescanin et al. 2021; Ortiz
et al. 2022). We expect that the ability to produce highly accu-
rate emulations of PMW data at virtually continuous spatio-
temporal resolution will open new frontiers in modeling,
retrieving, and analyzing atmospheric properties.
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APPENDIX

Additional Bayesian Model Results

Tables A1–A3 show the MAE, RMSE, and MSD of
Bayesian Flipout model predictions for all 13 GMI channels
in January, February, and May, respectively. Comparison
with Tables 3–5 shows that predictive skill is similar be-
tween deterministic and Bayesian models for each channel.
For example, both the deterministic and Flipout model ar-
chitectures have the lowest error at 183 6 3 GHz, and the
horizontal 37- and 89-GHz predictions have the largest er-
ror in all three months. Additionally, differences between
the skill of each model architecture per channel show that
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the horizontal 10.6-GHz channel has the largest difference in
MAE at 2.01 K in January. Further comparison between the
deterministic and Bayesian models shows that in general, the
Bayesian models perform marginally better in the scattering-

dominant channels of 89-GHz-and-higher frequencies. For
channels that are more sensitive to emission, the deterministic
models perform slightly better. However, differences in skill
are small.
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Orescanin, M., V. Petković, S. W. Powell, B. R. Marsh, and S. C.
Heslin, 2021: Bayesian deep learning for passive microwave
precipitation type detection. IEEE Geosci. Remote Sens.
Lett., 19, 1–5, https://doi.org/10.1109/LGRS.2021.3090743.

Ortiz, P., M. Orescanin, V. Petkovic, S. W. Powell, and B. Marsh,
2022: Decomposing satellite-based classification uncertainties
in large Earth science datasets. IEEE Trans. Geosci. Remote
Sens., 60, 1–11, https://doi.org/10.1109/TGRS.2022.3152516.
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